Central fatigue during high-intensity intermittent pedaling

Mehrangiz Ghorbani,1, 2 Farshad Ghazalian,1,*Khosrow Ebrahim,3, Hossein Abednatanzi 1

Abstract Introduction: The central-governor model explains the mechanism of endurance exercise-induced central fatigue, but high-intensity exercise-induced central fatigue has not been investigated yet. This study aimed to research how central fatigue during high-intensity intermittent pedaling alters the neural response, which results in Electroencephalography (EEG) recordings.

Methods: We assessed neural response by measuring the alternation of brainwave spectral power during an intermittent high-intensity 60-minute exercise on an ergometer cycle. The cadences were changed every 10 minutes according to intermittent pattern altering (90-120-60-120-60-90 rpm). EEG was used to analyze altering brain function. Heart Rate (HR), Blood Lactate (BL), and Rating of Perceived Exertion (RPE) were measured after the change in cadences.

Results: HR, BL, and RPE increased at a cadence of 120 rpm compared with 60 rpm on the ergometer cycle. The spectral power of EEG, according to cadence × brainwaves, significantly increased (P<0.01) in the alpha and beta frequency ranges with a change in cadences between 60 rpm and 120 rpm. The spectral power of the EEG significantly increased (P<0.01) over the whole frequency range from rest to warming (theta: 251%, alpha: 165%, beta: 145%) and significantly reduced in theta, alpha, and beta (theta: 176%, alpha: 142%, beta: 77%) (P≤0.01).

Conclusion: High-intensity exercises (90 and 120 cadences) increased brain function, regardless of fatigue occurrence. High-intensity interval training (HIIT) led to altering the neural response. It would be required to investigate the usefulness of HIIT to treat some of the psychotic disorders. Highlights

  • Central nervous system control in cardiac function largely depends on the intensity of training determined by a change of cadence in the ergometer cycle.

  • High-intensity interval training increases brain neural efficiency.

  • Exercise at high intensities improves metabolic function, cardiac function, and breathing capacity.

  • The brain’s role with attention to its neural response in changing position is crucial. We could emphasize it by planning appropriate training to improve the function of the brain.